Adaptation of enterocytic Caco-2 cells to glucose modulates triacylglycerol-rich lipoprotein secretion through triacylglycerol targeting into the endoplasmic reticulum lumen.
نویسندگان
چکیده
Enterocytes are responsible for the absorption of dietary lipids, which involves TRL [TG (triacylglycerol)-rich lipoprotein] assembly and secretion. In the present study, we analysed the effect on TRL secretion of Caco-2 enterocyte adaptation to a differential glucose supply. We showed that TG secretion in cells adapted to a low glucose supply for 2 weeks after confluence was double that of control cells maintained in high-glucose-containing medium, whereas the level of TG synthesis remained similar in both conditions. This increased secretion resulted mainly from an enlargement of the mean size of the secreted TRL. The increased TG availability for TRL assembly and secretion was not due to an increase in the MTP (microsomal TG transfer protein) activity that is required for lipid droplet biogenesis in the ER (endoplasmic reticulum) lumen, or to the channelling of absorbed fatty acids towards the monoacylglycerol pathway for TG synthesis. Interestingly, by electron microscopy and subcellular fractionation studies, we observed, in the low glucose condition, an increase in the TG content available for lipoprotein assembly in the ER lumen, with the cytosolic/microsomal TG levels being verapamil-sensitive. Overall, we demonstrate that Caco-2 enterocytes modulate TRL secretion through TG partitioning between the cytosol and the ER lumen according to the glucose supply. Our model will help in identifying the proteins involved in the control of the balance between TRL assembly and cytosolic lipid storage. This mechanism may be a way for enterocytes to regulate TRL secretion after a meal, and thus impact on our understanding of post-prandial hypertriglyceridaemia.
منابع مشابه
Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in CaCo-2 cells.
The source for triacylglycerol-rich lipoprotein cholesterol was investigated in CaCo-2 cells grown on filters separating an upper and a lower well. Oleic acid, a fatty acid that promotes triacylglycerol-rich lipoprotein synthesis and secretion in CaCo-2 cells, increased the vesicular-mediated influx of plasma membrane cholesterol to the endoplasmic reticulum. Unesterified and esterified cholest...
متن کاملPhosphatidylcholine increases the secretion of triacylglycerol-rich lipoproteins by CaCo-2 cells.
The regulation of lipid synthesis and secretion by phosphatidylcholine was investigated in CaCo-2 cells grown on semi-permeable filters. In cells incubated with 1 mM taurocholate and 100-500 microM phosphatidylcholine, cholesteryl ester synthesis was decreased, triacylglycerol synthesis was increased modestly, whereas phospholipid synthesis was unaffected. Acyl-CoA-cholesterol acyltransferase a...
متن کاملHEPATOMA McARDLE-RH7777 CELLS HAVE THE SAME RESPONSE AS NORMAL RAT HEPATOCYTES TO BOTH DIBUTYRYL-cAMP AND ANTICALMODULINW-7
The effects of cAMP-analogue dibutyryl-cAMP and anticalmodulin W-7 were studied on de novo synthesis and secretion of lipids in cultures of hepatoma McArdle RH7777 cells and normal rat hepatocytes. Dibutyryl-cAMP and W -7 separately caused a significant decrease in the secretion of de novo synthesized triacyl [3H]glycerol in both cultures of McArdle cells and rat hepatocytes. The inhibito...
متن کاملTetradecylthioacetic acid (a 3-thia fatty acid) decreases triacylglycerol secretion in CaCo-2 cells.
The effects of the hypolipidemic fatty acid analogue tetradecylthioacetic acid (TTA) on synthesis and secretion of lipoproteins in CaCo-2 cells were studied. Radiolabeled tetradecylthioacetic acid was absorbed and metabolized as efficiently as oleic acid, although a discrepancy in the metabolic fate was evident. Whereas tetradecylthioacetic acid was incorporated into cell-associated triacylglyc...
متن کاملMicrosomal triacylglycerol transfer protein (MTP) is required to expand tracheal lumen in Drosophila in a cell-autonomous manner.
The Drosophila tracheal system is a useful model for dissecting the molecular mechanisms controlling the assembly and expansion of tubular organs. We have identified microsomal triacylglycerol transfer protein (MTP) as a new player involved in the lumen expansion in unicellular tubes. MTP is an endoplasmic reticulum resident protein that can transfer triglycerides and phospholipids between memb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 395 2 شماره
صفحات -
تاریخ انتشار 2006